所得的全部五位数中,质数一共有多少个

 我来答
麻木y1
高粉答主

2019-08-09 · 每个回答都超有意思的
知道小有建树答主
回答量:765
采纳率:100%
帮助的人:22.7万
展开全部

例:任意调换五位数字12345的各位树上的位置,所得的全部五位数中,质数的个数。

答:0个。因为这个五位数各数位上的数字之和等于15能被3整除,因而这个五位数一定能被3整除,不可能是质数。

1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。

因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

扩展资料:

1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。

2、存在任意长度的素数等差数列。

3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)。

4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)。

5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)。

6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2)。

jjjjttthhh
2018-02-01 · TA获得超过3.9万个赞
知道大有可为答主
回答量:3.6万
采纳率:86%
帮助的人:3757万
展开全部
五位数的质数一共有8363个:
10007
10009
10037
......
99971
99989

99991
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式