高中数学 求第二问详细过程
3个回答
展开全部
要使Sn<S6(n∈N*.且n≠6)
则d<0,且a6>0,且a7<0
得-5d<a1<-6d
所以a1最小值不存在,
这里不能取-5d,否则a6=0,S5=S6,不满足条件了。
所以可以求出a1范围,没有最值
则d<0,且a6>0,且a7<0
得-5d<a1<-6d
所以a1最小值不存在,
这里不能取-5d,否则a6=0,S5=S6,不满足条件了。
所以可以求出a1范围,没有最值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
an=a1+(n-1)d
a2.a9= (a4)^2
(a1+d)(a1+8d)=(a1+3d)^2
(1+d)(1+8d)=(1+3d)^2
1+9d+8d^2 = 1+6d+9d^2
d^2-3d=0
d=3
an = 1+3(n-1)= 3n-2
(2)
Sn<S6
[2a1+(n-1)d ]n/2 < 3(2a1+5d )
[2a1+(n-1)d ]n < 6(2a1+5d )
dn^2 - (d-2a1)n -12a1 -30d <0
-dn^2 + (d-2a1)n + 12a1 +30d >0
=>d<0 and △≤0
△≤0
(d-2a1)^2 +4d(12a1 +30d) ≤0
121d^2+44a1.d +4(a1)^2 ≤0
(11d+ 2a1)^2 ≤ 0
a1= -11d/2
min a1 at d=-2
min a1 = 11
an=a1+(n-1)d
a2.a9= (a4)^2
(a1+d)(a1+8d)=(a1+3d)^2
(1+d)(1+8d)=(1+3d)^2
1+9d+8d^2 = 1+6d+9d^2
d^2-3d=0
d=3
an = 1+3(n-1)= 3n-2
(2)
Sn<S6
[2a1+(n-1)d ]n/2 < 3(2a1+5d )
[2a1+(n-1)d ]n < 6(2a1+5d )
dn^2 - (d-2a1)n -12a1 -30d <0
-dn^2 + (d-2a1)n + 12a1 +30d >0
=>d<0 and △≤0
△≤0
(d-2a1)^2 +4d(12a1 +30d) ≤0
121d^2+44a1.d +4(a1)^2 ≤0
(11d+ 2a1)^2 ≤ 0
a1= -11d/2
min a1 at d=-2
min a1 = 11
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询