大一微积分题求解
展开全部
x^(1/3) -1 = [x^(1/6)]^2 -1^2 =[ x^(1/6) -1 ] .[ x^(1/6) +1 ]
x^(1/2) -1 = [x^(1/6)]^3 -1^3 =[ x^(1/6) -1 ] .[ x^(1/3) +x^(1/6) +1 ]
lim(x->1) [x^(1/3) -1]/[x^(1/2) -1]
=lim(x->1) [ x^(1/6) -1 ] .[ x^(1/6) +1 ]/{ [ x^(1/6) -1 ] .[ x^(1/3) +x^(1/6) +1 ] }
=lim(x->1) [ x^(1/6) +1 ]/[ x^(1/3) +x^(1/6) +1 ]
= 2/3
x^(1/2) -1 = [x^(1/6)]^3 -1^3 =[ x^(1/6) -1 ] .[ x^(1/3) +x^(1/6) +1 ]
lim(x->1) [x^(1/3) -1]/[x^(1/2) -1]
=lim(x->1) [ x^(1/6) -1 ] .[ x^(1/6) +1 ]/{ [ x^(1/6) -1 ] .[ x^(1/3) +x^(1/6) +1 ] }
=lim(x->1) [ x^(1/6) +1 ]/[ x^(1/3) +x^(1/6) +1 ]
= 2/3
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询