4个回答
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为 ∠BAC=60,∠C=40,所以 ∠ABC=80.
又因为 BE 平分 ∠ABC,所以 ∠EBC=40=∠C,因此有 EB=EC.
要证 AB+BD=BE+AE,由 BE=EC,所以只要证 AB+BD=AE+EC=AC,即 AB+BC=AC.
延长 AB 至 F 使得 BF=BD. 此时只要证明 AF=AC.
注意到 AD 平分 ∠BAC,∠BAD=∠CAD (1)
由 BD=BF,∠F=∠BDF=1/2∠ABC=40,∠ADB=∠DAC+∠C=70,所以 ∠ADC=110. 而 ∠ADF=∠ADB+∠BDF=70+40=110,所以 ∠ADF=∠ADC (2)
又公共边 AD=AD (3)
所以由 (1)(2)(3) 可知 三角形ADF全等于三角形ADC,因此 AF=AC.
综上,AB+BD=AE+BE.
又因为 BE 平分 ∠ABC,所以 ∠EBC=40=∠C,因此有 EB=EC.
要证 AB+BD=BE+AE,由 BE=EC,所以只要证 AB+BD=AE+EC=AC,即 AB+BC=AC.
延长 AB 至 F 使得 BF=BD. 此时只要证明 AF=AC.
注意到 AD 平分 ∠BAC,∠BAD=∠CAD (1)
由 BD=BF,∠F=∠BDF=1/2∠ABC=40,∠ADB=∠DAC+∠C=70,所以 ∠ADC=110. 而 ∠ADF=∠ADB+∠BDF=70+40=110,所以 ∠ADF=∠ADC (2)
又公共边 AD=AD (3)
所以由 (1)(2)(3) 可知 三角形ADF全等于三角形ADC,因此 AF=AC.
综上,AB+BD=AE+BE.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询