求教∫√﹙x²+1﹚dx怎么解?

 我来答
贸书文戴半
2020-02-14 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:31%
帮助的人:676万
展开全部
思路:分部积分法很有用!
=x*根号(x^2+1)-积分:xd(根号(x^2+1))
=x根号(X^2+1)-积分:x^2/根号(x^2+1)dx
=x根号(x^2+1)-积分:(x^2+1-1)/根号(x^2+1)dx
=x根号(x^2+1)-积分:根号(x^2+1)+积分:dx/根号(x^2+1)
先求:积分:dx/根号(x^2+1)
令x=tant
dx=d(tant)=sec^2tdt
原式
=积分:sec^2tdt/sect
=积分:sectdt
=积分:cost/cos^2tdx
=积分:d(sinx)/(1-sin^2x)
=1/2ln|(1+sinx)/(1-sinx)|+C
x=tant代入有:
=ln|x+根号(x^2+1)|+C
令原来的积分是Q
Q==x根号(x^2+1)-Q+积分:dx/根号(x^2+1)
2Q=x根号(x^2+1)+ln|x+根号(x^2+1)|+C
所以
Q=1/2[x根号(X+1)+ln|x+根号(x^2+1)|+C
(C
是常数)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式