求这个的导数?
4个回答
展开全部
y= (arccosx)^2. { [ln(arccosx)]^2 - ln(arccosx) + 1/2 }
u= (arccosx)^2
u'
=2arccosx . (arccosx)'
=2arccosx . [-1/√(1-x^2)
=-2arccosx/√(1-x^2)
v=[ln(arccosx)]^2
v'
=2ln(arccosx) . [ln(arccosx)]'
=2ln(arccosx) . [1/(arccosx)] . (arccosx)'
=2ln(arccosx) . [1/(arccosx)] . [-1/√(1-x^2)]
=-2ln(arccosx) / [arccosx .√(1-x^2) ]
w=ln(arccosx)
w'
=(1/arccosx) .(arccosx)'
=(1/arccosx) . [-1/√(1-x^2)]
=-1/[arccosx.√(1-x^2)]
y= (arccosx)^2. { [ln(arccosx)]^2 - ln(arccosx) + 1/2 }
= u( v-w+1/2)
dy/dx
= u'( v-w+1/2) + u(v'-w')
=[-2arccosx/√(1-x^2)] .{ [ln(arccosx)]^2 - ln(arccosx) + 1/2 }
+ (arccosx)^2 . [-2ln(arccosx) / [arccosx .√(1-x^2) ] +1/[arccosx.√(1-x^2)] }
=[-2arccosx/√(1-x^2)] .{ [ln(arccosx)]^2 - ln(arccosx) + 1/2 }
+arccosx.[-2ln(arccosx) +1] /√(1-x^2)
= -arccosx. [ 2ln(arccosx)]^2 + 1]/√(1-x^2)
u= (arccosx)^2
u'
=2arccosx . (arccosx)'
=2arccosx . [-1/√(1-x^2)
=-2arccosx/√(1-x^2)
v=[ln(arccosx)]^2
v'
=2ln(arccosx) . [ln(arccosx)]'
=2ln(arccosx) . [1/(arccosx)] . (arccosx)'
=2ln(arccosx) . [1/(arccosx)] . [-1/√(1-x^2)]
=-2ln(arccosx) / [arccosx .√(1-x^2) ]
w=ln(arccosx)
w'
=(1/arccosx) .(arccosx)'
=(1/arccosx) . [-1/√(1-x^2)]
=-1/[arccosx.√(1-x^2)]
y= (arccosx)^2. { [ln(arccosx)]^2 - ln(arccosx) + 1/2 }
= u( v-w+1/2)
dy/dx
= u'( v-w+1/2) + u(v'-w')
=[-2arccosx/√(1-x^2)] .{ [ln(arccosx)]^2 - ln(arccosx) + 1/2 }
+ (arccosx)^2 . [-2ln(arccosx) / [arccosx .√(1-x^2) ] +1/[arccosx.√(1-x^2)] }
=[-2arccosx/√(1-x^2)] .{ [ln(arccosx)]^2 - ln(arccosx) + 1/2 }
+arccosx.[-2ln(arccosx) +1] /√(1-x^2)
= -arccosx. [ 2ln(arccosx)]^2 + 1]/√(1-x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
解:令 u=arccosx,则
du/dx=-1/√(1-x²),
y=u²(ln²u-lnu+1/2),
dy/du
=2u(ln²u-lnu+1/2)+u²[2(lnu)/u-1/u]
=u(2ln²u-2lnu+1)+u(2lnu-1)
=2uln²u,
所以
dy/dx=(dy/du)·(du/dx)
=-(2uln²u)/√(1-x²)
=-(2arccosxln²arccosx)/√(1-x²) .
du/dx=-1/√(1-x²),
y=u²(ln²u-lnu+1/2),
dy/du
=2u(ln²u-lnu+1/2)+u²[2(lnu)/u-1/u]
=u(2ln²u-2lnu+1)+u(2lnu-1)
=2uln²u,
所以
dy/dx=(dy/du)·(du/dx)
=-(2uln²u)/√(1-x²)
=-(2arccosxln²arccosx)/√(1-x²) .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询