简单的一阶连续偏导数问题,求详细过程 20
2个回答
展开全部
u = f(xy, x/y), p = xy, q = x/y
∂u/∂x = (∂f/∂p)(∂p/∂x) + (∂f/∂q)(∂q/∂x) = y(∂f/∂p) + (1/y)(∂f/∂q)
∂u/∂y = (∂f/∂p)(∂p/∂y) + (∂f/∂q)(∂q/∂y) = x(∂f/∂p) - (x/y^2)(∂f/∂q)
也就是:∂u/∂x = yf'1 + (1/y)f'2, ∂u/∂y = xf'1 - (x/y^2)f'2
∂u/∂x = (∂f/∂p)(∂p/∂x) + (∂f/∂q)(∂q/∂x) = y(∂f/∂p) + (1/y)(∂f/∂q)
∂u/∂y = (∂f/∂p)(∂p/∂y) + (∂f/∂q)(∂q/∂y) = x(∂f/∂p) - (x/y^2)(∂f/∂q)
也就是:∂u/∂x = yf'1 + (1/y)f'2, ∂u/∂y = xf'1 - (x/y^2)f'2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询