设x,y>=0,2x+y=6,则z=4x^2+3xy+y^2-6x-3y的最大值与最小值的和为?

 我来答
展绿柳练未
2020-03-13 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:33%
帮助的人:681万
展开全部
由2x+y=6,可以得到y=6-2x,因为x≥0,y≥0,所以y=6-2x≥0故3≥x≥0
将y=6-2x代入到z=4x^2+3xy+y^2-6x-3y中
可以得到z=4x^2+3x(6-2x)+(6-2x)^2-6x-3(6-2x)
=2x^2-6x+18=2(x-3/2)^2+18-9/2
所以变成了二次函数在给定区间上的最值,由于对称轴在给定区间上,
所以在对称轴处取得最小值27/2,
在0或3处取得最大值为18
贲玉花田云
2020-04-21 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:26%
帮助的人:852万
展开全部
解:
因为2x+y=6,所以y=6-2x
所以Z=4x^2+3xy+y^2-6x-3y
=4x^2+3x(6-2x)+(6-2x)^2-6x-3(6-2x)
=4x^2+18x-6x^2+4x^2-24x+36-6x-18+6x
=2x^2-6x+18
=2(x-3/2)^2+27/2
又因为x,y>=0,2x+y=6
y=0时,x=3
所以x的取值范围是[0,3]
所以Z=2(x-3/2)^2+27/2
在[0,3]上的最大值时x取0或3
即当x=0,y=6或x=3,y=0时
Z有最大值Z=18
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式