nm粘土矿物
2020-01-16 · 技术研发知识服务融合发展。
粘土矿物中绿泥石、蛭石、蒙脱石以及由绿泥石晶层与蒙脱石或蛭石的2∶1型含水晶层构成的间层矿物都可具有1.4nm的X射线衍射峰,常统称其为1.4nm粘土矿物。1.4nm粘土矿物广泛存在于地表土壤、风化壳和河流、湖泊及海洋沉积物中,其中1.4nm间层矿物是热带、亚热带酸性土壤和温带、寒温带灰化土中常见的粘土矿物。1.4nm间层矿物是指由绿泥石晶层与2∶1型含水膨胀层交互连生所构成的不规则间层粘土矿物,其中2∶1型含水晶层可以是蒙脱石层,也可以是蛭石层(杨雅秀等,1994)。因此,1.4nm间层矿物可以由绿泥石与蒙脱石或蛭石形成,而蒙脱石和蛭石层间间距和电荷的差异,使与蒙脱石晶层或蛭石晶层形成的1.4nm间层矿物也有很大差异,尤其对土壤矿物形成演化、土壤发生发育和土壤性质产生不同的影响(徐凤琳等,1990)。近年来,有关学者对其进行了较深入的讨论,并将其称为1.4nm过渡矿物(贺纪正等,1993)。我国南方碳酸盐岩红色风化壳发育的土壤大多属酸性土壤,并有较突出的酸雨侵蚀和土质退化等问题,而不同的1.4nm粘土矿物对土壤性质和酸沉降等所带来的土壤环境影响是不同的,因此其已成为土壤矿物学领域的研究热点。然而,对环境问题较为突出的我国南方碳酸盐岩红色风化壳及其土壤中1.4nm粘土矿物的研究目前尚无较详细的工作。
1.1.4nm粘土矿物特征
在贵州碳酸盐岩红色风化壳72个样品的X射线衍射图谱中,有64个样品的图谱存在1.4nm衍射峰,说明1.4nm粘土矿物广泛存在于碳酸盐岩红色风化壳中,但它们究竟代表何种1.4nm粘土矿物仅从未经特殊处理的样品X射线图谱〔图3-1(A)、图3-2(A)〕难以区别。根据1.4nm粘土矿物的晶体结构特征和近年来的研究成果,对样品进行了进一步处理后再做X射线衍射分析,发现经甘油饱和处理后的所有样品的1.4nm衍射峰均未变化〔图3-1(B)、图3-2(B)〕,证明样品中不存在蒙脱石及其间层矿物。经钾饱和并加温至300℃和550℃处理,样品1.4nm衍射峰发生变化〔图3-1(B),图3-2(B)〕,并具有明显的分布规律。风化强度较弱的遵义石灰岩红色风化壳剖面样品经钾饱和处理后,1.4nm衍射峰消失。1.0nm衍射峰增强,并呈向低角度拖尾的不对称反射峰,0.7nm峰不变〔图3-2(B)〕,部分样品中还存在0.15nm的衍射峰(图3-2、样品ZC-03、ZC-01),这是较典型的蛭石X射线衍射特征,属二八面体型蛭石。风化强度较大的安顺白云岩红色风化壳剖面样品经钾饱和处理后,其1.4nm衍射峰不变,但加热至300℃和550℃,大部分样品中的1.4nm衍射峰消失,构成宽缓不对称的1.0nm衍射峰(图3-1,样品PS-7、PS-10),部分样品仅有微弱的不对称1.4nm衍射峰存在(图3-1,样品PS-1、PS-2),证明安顺白云岩红色风化壳剖面中的1.4nm粘土矿物主要是绿泥石/蛭石间层矿物及少量绿泥石。遵义石灰岩红色风化壳剖面中的蛭石红外光谱特征明显(图3-3,样品ZC-1、ZC-3、ZC-5、ZC-9),主要表现在高频区和中低频区。在高频区蛭石的红外吸收谱带表现出较缓的宽谱带,Mg-OH的伸缩振动和水分子的伸缩振动造成了3700~3200cm-1之间的宽缓吸收带,中低频区(1000cm-1附近)的强吸收带(图3-3,样品ZC-3、ZC-5、ZC-9)由结构中Si-Si键的伸缩振动造成。绿泥石/蛭石间层矿物的红外光谱特征(图3-3,样品PS-2、PS-7、PS-10)基本上继承了绿泥石和蛭石具有的吸收最大值特征,但由于红色风化壳中绿泥石/蛭石间层矿物和绿泥石常与高岭石、三水铝石等粘土矿物共生,其红外光谱特征常受这些矿物干扰,而被掩盖难以区分。
2.1.4nm间层矿物的环境意义
对红色风化壳粘土矿物系统的研究表明,1.4nm粘土矿物(绿泥石、蛭石和绿泥石/蛭石间层矿物)是贵州碳酸盐岩红色风化壳中粘土矿物的重要组成部分,其分布随成土环境和风化强度在剖面中呈明显的规律性变化,并对红色风化壳的物理化学性质产生明显影响,特别是1.4nm间层矿物对成土环境的敏感性和在粘土矿物演化中的重要地位,使贵州碳酸盐岩红色风化壳中1.4nm间层矿物的确认和共生粘土矿物的研究,具有十分重要的环境指示意义。
1)阳离子交换量(CEC)是红色风化壳土体的重要理化性质,对红粘土的工程地质性质影响很大,也是表层土壤保肥供肥性能的重要指标。贵州碳酸盐岩红色风化壳及其发育土壤中广泛存在的1.4nm粘土矿物,直接影响了红色风化壳及其表层土壤的理化性质(表3-1)。但究竟是哪一种矿物,如绿泥石、蛭石、蒙脱石,还是1.4nm间层矿物起着决定性作用呢?过去由于研究方法和思路上的局限,一直笼统的称为绿泥石或蒙脱石,从而影响到碳酸盐岩红色风化壳土体和土壤资源的评价与合理施肥以及土壤矿物形成演化等研究。我们的研究证实,这种土壤中的1.4nm矿物为蛭石和绿泥石/蛭石间层矿物及少量绿泥石。以蛭石为主要粘土矿物的红色风化壳土体及土壤具有较高的阳离子交换量,pH值大于6;绿泥石/蛭石间层矿物为主要粘土矿物的红色风化壳土体及其土壤阳离子交换量较低,pH值大多小于6,表层土壤属微酸或酸性土壤。
表3-1 碳酸盐岩红色风化壳剖面部分样品基本特征
2)碳酸盐岩红色风化壳的形成和演化经历了3个主要的风化成土地球化学阶段,即富硅铝脱钙镁阶段、富铁锰阶段和富铝脱硅阶段。这也是碳酸盐岩红色风化壳风化程度增强的过程。在不同的风化成土阶段,相应形成不同的1.4nm粘土矿物。由于1.4nm间层矿物具有对成土环境的敏感性特征,1.4nm间层矿物的大量出现,反映出碳酸盐岩红色风化壳已进入富铝脱硅的成土地球化学阶段并达到较高的风化程度。1.4nm间层矿物是湿热气候条件下,酸性富铝化成土地球化学环境的标志性矿物之一。
3)贵州是我国主要酸沉降地区,酸沉降所带来的土壤及环境酸化问题较为突出。土壤酸化是指土壤中氢离子和铝离子数量的增加,具体过程大致是:酸雨中的氢离子与土壤胶体表面吸附的盐基性离子进行交换反应而被吸附在土粒表面,被交换的盐基性离子随渗漏水淋失;土粒表面的氢离子又自发地与矿物晶格表面的铝反应,迅速转化成交换性铝。而不同粘土矿物组成的土壤对酸雨会表现出不同的缓冲能力,即对酸雨具有不同的敏感性特征。这种特征除受pH值、阳离子交换量和盐基饱和度影响外,主要受粘土矿物组合特征及其风化过程的影响。在某种程度上,土壤对酸雨的缓冲作用实际上是通过土壤矿物(特别是粘土矿物)的形成转化(风化)过程来体现的。贵州碳酸盐岩红色风化壳中1.4nm粘土矿物的形成和转化较好地体现了土壤矿物的形成转化(风化)在土壤缓冲酸雨过程中的重要作用。对于处于富铁锰成土阶段,风化程度较低,粘土矿物以蛭石和埃洛石为主的土壤对酸雨具有较强的缓冲能力,pH值保持在6以上,对酸雨不敏感。而处于富铝脱硅成土阶段,风化程度较高,粘土矿物以1.4nm间层矿物和高岭石为主的土壤对酸雨缓冲能力较弱,pH值多在5.5以下,对酸雨较敏感。因此,1.4nm间层矿物也是土壤对酸雨敏感性特征的重要指标之一。
2024-09-03 广告