如图,在矩形ABCD中,对角线AC,BD交于点O,BE平分∠ABC交AC于点F,交AD于点E,且∠DBF=15°求证OE=EF
展开全部
证明:
∵矩形ABCD
∴AO=BO,∠ABC=∠BAD=90
∵BE平分∠ABC
∴∠ABE=∠CBE=45
∵AD∥BC
∴∠AEB=∠CBE
∴∠ABE=∠AEB=45
∴AE=AB
∵∠DBF=15
∴∠ABD=∠ABE+∠DBF=45+15=60
∴等边△AOB
∴∠BAC=60,AO=AB
∴∠DAC=∠BAD-∠BAC=30,AO=AE
∴∠AOE=(180-∠DAC)/2=75
∵∠EFC=∠DAC+∠AEB=75
∴∠AOE=∠EFC
∴OE=EF
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
∵矩形ABCD
∴AO=BO,∠ABC=∠BAD=90
∵BE平分∠ABC
∴∠ABE=∠CBE=45
∵AD∥BC
∴∠AEB=∠CBE
∴∠ABE=∠AEB=45
∴AE=AB
∵∠DBF=15
∴∠ABD=∠ABE+∠DBF=45+15=60
∴等边△AOB
∴∠BAC=60,AO=AB
∴∠DAC=∠BAD-∠BAC=30,AO=AE
∴∠AOE=(180-∠DAC)/2=75
∵∠EFC=∠DAC+∠AEB=75
∴∠AOE=∠EFC
∴OE=EF
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |