把下列分式化为部分分式之和:2x³-x²+1/(x²+1)(x²+2)
1个回答
展开全部
(2x³-x²+1)/(x²+1)(x²+2)=[(Ax+B)/(x²+1)]+[(Cx+D)/(x²+2)]
=[(Ax+B)(x²+2)+(Cx+D)(x²+1)]/(x²+1)(x²+2)
=[(Ax^3+2Ax+Bx²+2B)+(Cx^3+Cx+Dx²+D)]/(x²+1)(x²+2)
=[(A+C)x^3+(B+D)x²+(2A+C)x+(2B+D)]/(x²+1)(x²+2)
等式两边对应系数相等得:
A+C=2................(1)
B+D=-1................(2)
2A+C=0..............(3)
2B+D=1..............(4)
解得:A=-2,
B=2
,C=4
,D=-3
所以(2x³-x²+1)/(x²+1)(x²+2)=[(2-2x)/(x²+1)]+[(4x-3)/(x²+2)]
=[(Ax+B)(x²+2)+(Cx+D)(x²+1)]/(x²+1)(x²+2)
=[(Ax^3+2Ax+Bx²+2B)+(Cx^3+Cx+Dx²+D)]/(x²+1)(x²+2)
=[(A+C)x^3+(B+D)x²+(2A+C)x+(2B+D)]/(x²+1)(x²+2)
等式两边对应系数相等得:
A+C=2................(1)
B+D=-1................(2)
2A+C=0..............(3)
2B+D=1..............(4)
解得:A=-2,
B=2
,C=4
,D=-3
所以(2x³-x²+1)/(x²+1)(x²+2)=[(2-2x)/(x²+1)]+[(4x-3)/(x²+2)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询