若正数a,b满足ab=a+b+3,求ab的取值范围
5个回答
展开全部
利用换元思想。将ab令为t,将b用含a的式子表示出来,再将换过的元带入原来的式子中,根据a大于0判断方程只有一个根,再用伟达定理表示出两根之积和两根之和,最后判断a大于等于9,得知aB>=9。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设t=ab=a+b+3>3
令a,b是一个二次方程的两根则构造出的方程为
x^2+(3-t)x+t=0
则有△=(3-t)^2-4t=t^2-10t+9>=0
解得t>=9
ab的取值范围[9,+无穷大)
令a,b是一个二次方程的两根则构造出的方程为
x^2+(3-t)x+t=0
则有△=(3-t)^2-4t=t^2-10t+9>=0
解得t>=9
ab的取值范围[9,+无穷大)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:令ab=y,则b=y/a
所以y=a+y/a+3
则a^2+(3-y)a+y=0
因为a>0
所以方程只有正根
则可推出Δ=(3-y)^2-4y≧0
x1+x2=-(3-y)
>0
x1*x2=y>0
则y≧9
所以ab≧9
所以y=a+y/a+3
则a^2+(3-y)a+y=0
因为a>0
所以方程只有正根
则可推出Δ=(3-y)^2-4y≧0
x1+x2=-(3-y)
>0
x1*x2=y>0
则y≧9
所以ab≧9
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
好!!!!!
因为,正数a,b
所以,a>0,b>0,a+b>0
所以,ab>3
还有什么不明白的地方再问我。
谢谢
因为,正数a,b
所以,a>0,b>0,a+b>0
所以,ab>3
还有什么不明白的地方再问我。
谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询