设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x)

 我来答
招俊逸籍爱
2020-02-01 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:29%
帮助的人:742万
展开全部
(1)由于f(x+2)=-f(x),那么(用x+2代替x,可以得到)f[(x+2)+2]=-f(x+2)=-[-f(x)]=f(x)
则f(x+4)=f(x),f(x)是以4为周期的周期函数
——————————————————————————————————
(2)由题设我们知道x∈[0,2]时,f(x)=2x-x^2
当x∈[-2,0]时,-x∈[0,2],那么f(-x)=2*(-x)-(-x)^2=-2x-x^2
又因为f(x)为奇函数,所以f(x)=-f(-x)
可以得到在x∈[-2,0]时,f(x)=-(-2x-x^2)=2x+x^2
——————————————————————————————————
x∈[2,4],那么x-4∈[-2,0],那么f(x-4)=2(x-4)+(x-4)^2=x^2-6x+8
由于f(x)的周期是4,所以f(x)=f(x-4)=x^2-6x+8
因此,在x∈[2,4]时,f(x)=x^2-6x+8
——————————————————————————————————
(3)由x∈[0,2]时,f(x)=2x-x^2,
得到f(0)=f(4)=f(8)=……=0
f(1)=f(5)=f(9)=……=1
由x∈[2,4]时,f(x)=x^2-6x+8
得到f(2)=f(6)=f(10)=……0
f(3)=f(7)=f(11)=……-1
f(0)+f(1)+f(2)+……+f(2008)总共是2009个f()相加,每四个的和为0,所以前2008个的和都为0,f(2008)=f(0+4*502)=f(0)=0
所以f(0)+f(1)+f(2)+……+f(2008)=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式