已知a,b是正实数,a^2/(a^4+a^2+1)=1/24,b^3/(b^6+b^3+1)=1/19,则ab/(a^2+a+1)(b^2+b+1)的值为多少
1个回答
展开全部
a²
/(a⁴+a²+1)=1/24
(a⁴+a²+1)/a²=24
a²+1+1/a²=24
(a+1/a)²-1=24
(a+1/a)²=25
a是正数
a+1/a=5
b^3/(b^6+b^3+1)=1/19
(b^6+b^3+1)/b^3=19
b^3+1+1/b^3=19
(b+1/b)^3-3b-3/b+1=19
(b+1/b)^3-3(b+1/b)-18=0
(b+1/b)^3-3(b+1/b)^2+3(b+1/b)^2-3(b+1/b)-18=0
(b+1/b)^2(b+1/b-3)+3[(b+1/b)^-(b+1/b)-6]=0
(b+1/b)^2(b+1/b-3)+3(b+1/b-3)(b+1/b+2)=0
(b+1/b-3)[(b+1/b)^2+3(b+1/b+2)]=0
(b+1/b)^2+3(b+1/b+2)
=(b+1/b)^2+3(b+1/b)+6
=(b+1/b+3/2)^2-9/4+6>0
所以b+1/b-3=0
b+1/b=3
题为ab/(a2+a+1)(b2+b+1),所以答案应为1/24
/(a⁴+a²+1)=1/24
(a⁴+a²+1)/a²=24
a²+1+1/a²=24
(a+1/a)²-1=24
(a+1/a)²=25
a是正数
a+1/a=5
b^3/(b^6+b^3+1)=1/19
(b^6+b^3+1)/b^3=19
b^3+1+1/b^3=19
(b+1/b)^3-3b-3/b+1=19
(b+1/b)^3-3(b+1/b)-18=0
(b+1/b)^3-3(b+1/b)^2+3(b+1/b)^2-3(b+1/b)-18=0
(b+1/b)^2(b+1/b-3)+3[(b+1/b)^-(b+1/b)-6]=0
(b+1/b)^2(b+1/b-3)+3(b+1/b-3)(b+1/b+2)=0
(b+1/b-3)[(b+1/b)^2+3(b+1/b+2)]=0
(b+1/b)^2+3(b+1/b+2)
=(b+1/b)^2+3(b+1/b)+6
=(b+1/b+3/2)^2-9/4+6>0
所以b+1/b-3=0
b+1/b=3
题为ab/(a2+a+1)(b2+b+1),所以答案应为1/24
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询