已知函数f(x)=lnx+a/x,当a<0时,求函数f(x)的单调区间
1个回答
展开全部
1、定义域为:(0,+00)
当a<0时,lnx
,a/x
均是增函数,故只有单调增区间:(0,+00)
2、求导:f'(x)=1/x-a/x^2>0
=>
x>a
故当a∈【1,e】,则:最小值为:f(a)=lna+1=3/2
lna=1/2,a=根号e,符合条件;
当a>e时,最小值为:f(e)=1+a/e=3/2,=>a=e/2不合题意!
当a<1时,最小值为:f(1)=0+a=3/2,=>a=e/2不合题意!
综上:,a=根号e
当a<0时,lnx
,a/x
均是增函数,故只有单调增区间:(0,+00)
2、求导:f'(x)=1/x-a/x^2>0
=>
x>a
故当a∈【1,e】,则:最小值为:f(a)=lna+1=3/2
lna=1/2,a=根号e,符合条件;
当a>e时,最小值为:f(e)=1+a/e=3/2,=>a=e/2不合题意!
当a<1时,最小值为:f(1)=0+a=3/2,=>a=e/2不合题意!
综上:,a=根号e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |