∫dx/(x^4)(1+x^2)^(1/2)
2个回答
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
令x=tanu,则dx=sec²udu,(1+x^2)^(1/2)=secu
原式=∫ sec²u/[(tanu)^4secu] du
=∫ sec²u/[(tanu)^4secu] du
=∫ secu/(tanu)^4 du
=∫ cos³u/(sinu)^4 du
=∫ cos²u/(sinu)^4 d(sinu)
=∫ (1-sin²u)/(sinu)^4 d(sinu)
=∫ 1/(sinu)^4 d(sinu) - ∫ 1/sin²u d(sinu)
=-(1/3)(sinu)^(-3) + 1/sinu + C sinu=x/√(1+x²)
=-(1/3)(1+x²)^(3/2)/x³ + √(1+x²)/x + C
希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
原式=∫ sec²u/[(tanu)^4secu] du
=∫ sec²u/[(tanu)^4secu] du
=∫ secu/(tanu)^4 du
=∫ cos³u/(sinu)^4 du
=∫ cos²u/(sinu)^4 d(sinu)
=∫ (1-sin²u)/(sinu)^4 d(sinu)
=∫ 1/(sinu)^4 d(sinu) - ∫ 1/sin²u d(sinu)
=-(1/3)(sinu)^(-3) + 1/sinu + C sinu=x/√(1+x²)
=-(1/3)(1+x²)^(3/2)/x³ + √(1+x²)/x + C
希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询