高一基本不等式求最大最小值

 我来答
依清懿Lb
2020-10-10 · TA获得超过766个赞
知道小有建树答主
回答量:2291
采纳率:100%
帮助的人:72.7万
展开全部
基本不等式最大值最小值公式:copya+b≥2√(ab)。a大于0,b大于0,当且仅当a=b时,等号成立。定义:任意两个正数的算术平均数不小于它们的几何平均数
一般地,用纯粹的大于号">"、小于号"<"连接的不等式称为严格不等式,用不小于号(大于或等于号)"≥"、不大于号(小于或等于号)"≤"连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
均值定理:
已知x,y∈R+,x+y=S,x·y=P
(1)如果P是定值,那么当且仅当x=y时,S有最小值;
(2)如果S是定值,那么当且仅当x=y时,P有最大值。

当a、b∈R+,a+b=k(定值)时,a+b≥2√ab (定值)当且仅当a=b时取等号 。
(3)设X1,X2,X3,……,Xn为大于0的数。
则X1+X2+X3+……+Xn≥n乘n次根号下X1乘X2乘X3乘……乘Xn
(一定要熟练掌握)
当a、b、c∈R+, a + b + c = k(定值)时, a+b+c≥3*(3)√(abc)
即abc≤((a+b+c)/3)^3=k^3/27 (定值) 当且仅当a=b=c时取等号。
例题:1。求x+y-1的最小值。
分析:此题运用了均值定理。∵x+y≥2√xy。 ∴x+y-1≥2√xy -1
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式