基本不等式是怎样的不等式

 我来答
帐号已注销

2020-10-15 · TA获得超过3587个赞
知道大有可为答主
回答量:3505
采纳率:82%
帮助的人:110万
展开全部
基本不等式(fundamental inequality)是主要应用于求某些函数的最值及证明的不等式。

其表述为两个正实数的算术平均数大于或等于它们的几何平均数,表达式为(a+b)/2≥√(ab)。
文字叙述

两个正实数的算术平均数大于或等于它们的几何平均数。

两类最值问题

具体来说,利用基本不等式求最值包括下面两种类型的题目:

已知x>0,y>0,则:

如果积xy是定值p,那么当且仅当x=y时,x+y有最小值。(简记:积定和最小)

如果和x+y是定值p,那么当且仅当x=y时,xy有最大值。(简记:和定积最大)

两大技巧

“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。

调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。

公式

当且仅当时取等号

其中称为的算术平均数,称为的几何平均数。

变形

当且仅当时取等号

二元均值不等式

(调和均值≤几何均值≤算术均值≤平方均值)当且仅当a=b时等号成立

2证明编辑
算术证明

当时,两边开平方

因为,所以当且仅当时,不等式取等号。

几何证明

在中,,点为的中点,为高,设,

由射影定理,得

基本不等式的几何证明
基本不等式的几何证明

在中,点为斜边的中点

中,

当且仅当与重合,即时等号成立

3推广编辑
一般地,若是正实数,则有均值不等式

当且仅当时取等号

4应用编辑
和积互化

和定积最大

当一定时,且当时取等号

积定和最小

当一定时,且当时取等号
依清懿Lb
2020-10-15 · TA获得超过766个赞
知道小有建树答主
回答量:2291
采纳率:100%
帮助的人:71.7万
展开全部
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。“一正”就是指两个式子都为正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指当且仅当两个式子相等时,才能取等号。
两个正实数的算术平均数大于或等于它们的几何平均数。
两类最值问题
具体来说,利用基本不等式求最值包括下面两种类型的题目:
已知x>0;y>0,则:
如果积xy是定值p,那么当且仅当x=y时,x+y有最小值。(简记:积定和最小)
如果和x+y是定值p,那么当且仅当x=y时,xy有最大值。(简记:和定积最大)
两大技巧
“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。
调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式