矩阵的秩与所对应行列式的值有什么关系?

 我来答
远宏018
高粉答主

2020-12-24 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:2642
采纳率:100%
帮助的人:44.9万
展开全部

矩阵的秩与行列式的关系:

1、行列式为零意味着方阵不满秩;

2、矩阵中非0子式的最高阶数就是矩阵的秩;

3、超过矩阵的秩的任意阶方阵行列式必为0。

矩阵A的k阶子式:即在m×n矩阵A中,任取k行k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式。

先在矩阵中的m行中任选k行,得到组合;再在矩阵中的n列任选k列,得到组合。将二者相乘,便是矩阵A的k阶子式计算公式。

现在我们可以定义矩阵的秩:设置在m×n矩阵,存在一个非零r-order子公式D,和所有r +一阶子公式(如果有)是零,那么D被称为最高非零子公式的矩阵A,和秩序r叫做矩阵的秩,denoated r (A),特别是零矩阵的秩等于零。

例如,我们假设一个三阶矩阵S,从中我们可以得到S不再有大于三阶的子矩阵,那么我们知道S的三阶子矩阵只有一个| S |。如果计算| S |≠0,则S的秩为3,即R (S) = 3。如果| S |等于0。

扩展资料

1、如果矩阵中的任意r子公式不为0,且任意r+1子公式为0,则r的阶称为矩阵的秩。为一个矩阵,有一些r-order行列式,这不是零,r-order行列式是一个矩阵,你画r,r竖线,和交叉元素形成一个新表的数字,和的行列式表的数字被称为矩阵的r-order子表单。

2、如果我们对矩阵做一个初等行运算,把矩阵变换成行阶梯形矩阵,那么行阶梯形矩阵的非0行就是这个矩阵的秩。这是由运算角度给出的矩阵的秩的定义,即矩阵行初等运算后行阶梯形中非零行数。

3、给定角度的线性方程,我们可以理解成为一个约束,因为作为一个约束方程我们可以理解,当我们把与齐次线性方程组系数矩阵,矩阵的秩是方程的数目,系统中真的存在。

4、秩是向量集中独立向量的个数,类似于上述方程的角度。

参考资料来源:百度百科-行列式

参考资料来源:百度百科-矩阵的秩

北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
教育小百科达人
2020-12-23 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:473万
展开全部

n阶矩阵的秩为n时,所对应的行列式的值大于零,当n阶矩阵的秩<n时,所对应的行列式的值等于零。

一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。



扩展资料:

设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
浦奇本紫云
2019-08-17 · TA获得超过1143个赞
知道小有建树答主
回答量:1640
采纳率:90%
帮助的人:8.1万
展开全部
n阶矩阵的秩为n时,所对应的行列式的值大于零,当n阶矩阵的秩<n时,所对应的行列式的值等于零,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式