直线l过抛物线y^2=8x的焦点,且与抛物线交于A,B两点,若线段AB的长度为9,求直线AB的方程
1个回答
展开全部
2p=8,因此 p=4,p/2=2 ,
所以抛物线焦点坐标为 F(2,0),
设直线 AB 方程为 y=k(x-2) ,
代入抛物线方程得 [k(x-2)]^2=8x ,
化简得 k^2*x^2-4(k^2+2)x+4k^2=0 ,
设 A(x1,y1),B(x2,y2),
则 |AB|=x1+x2+p=4(k^2+2)/k^2+4=9 ,
解得 k=±2√2 ,
所以,所求直线 AB 的方程为 y=2√2*(x-2) 或 y= -2√2*(x-2) .
所以抛物线焦点坐标为 F(2,0),
设直线 AB 方程为 y=k(x-2) ,
代入抛物线方程得 [k(x-2)]^2=8x ,
化简得 k^2*x^2-4(k^2+2)x+4k^2=0 ,
设 A(x1,y1),B(x2,y2),
则 |AB|=x1+x2+p=4(k^2+2)/k^2+4=9 ,
解得 k=±2√2 ,
所以,所求直线 AB 的方程为 y=2√2*(x-2) 或 y= -2√2*(x-2) .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询