1个回答
展开全部
1、向量的加法
向量的加法满足平行四边形法则和三角形法则.
AB+BC=AC.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的运算律:交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c).
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
AB-AC=CB.即“共同起点,指向被减”
a=(x,y)
b=(x',y')
则
a-b=(x-x',y-y').4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且|λa|=|λ|•|a|.
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意.
当a=0时,对于任意实数λ,都有λa=0.
注:按定义知,如果λa=0,那么λ=0或a=0.
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.
当|λ|>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍;
当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的|λ|倍.
数与向量的乘法满足下面的运算律
结合律:(λa)•b=λ(a•b)=(a•λb).
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①
如果实数λ≠0且λa=λb,那么a=b.②
如果a≠0且λa=μa,那么λ=μ.
3、向量的数量积
定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作<a,b>并规定0≤<a,b>≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos<a,b>;若a、b共线,则a•b=+-|a||b|.
向量的数量积的坐标表示:a•b=x•x'+y•y'.
向量的数量积的运算律
a•b=b•a(交换律);
(λa)•b=λ(a•b)(关于数乘法的结合律);
(a+b)•c=a•c+b•c(分配律);
向量的数量积的性质
a•a=|a|的平方.
a⊥b
<=>a•b=0.
|a•b|≤|a|•|b|.
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.
2、向量的数量积不满足消去律,即:由
a•b=a•c
(a≠0),推不出
b=c.
3、|a•b|≠|a|•|b|
4、由
|a|=|b|
,推不出
a=b或a=-b.
向量的加法满足平行四边形法则和三角形法则.
AB+BC=AC.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的运算律:交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c).
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
AB-AC=CB.即“共同起点,指向被减”
a=(x,y)
b=(x',y')
则
a-b=(x-x',y-y').4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且|λa|=|λ|•|a|.
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意.
当a=0时,对于任意实数λ,都有λa=0.
注:按定义知,如果λa=0,那么λ=0或a=0.
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.
当|λ|>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍;
当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的|λ|倍.
数与向量的乘法满足下面的运算律
结合律:(λa)•b=λ(a•b)=(a•λb).
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①
如果实数λ≠0且λa=λb,那么a=b.②
如果a≠0且λa=μa,那么λ=μ.
3、向量的数量积
定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作<a,b>并规定0≤<a,b>≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos<a,b>;若a、b共线,则a•b=+-|a||b|.
向量的数量积的坐标表示:a•b=x•x'+y•y'.
向量的数量积的运算律
a•b=b•a(交换律);
(λa)•b=λ(a•b)(关于数乘法的结合律);
(a+b)•c=a•c+b•c(分配律);
向量的数量积的性质
a•a=|a|的平方.
a⊥b
<=>a•b=0.
|a•b|≤|a|•|b|.
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.
2、向量的数量积不满足消去律,即:由
a•b=a•c
(a≠0),推不出
b=c.
3、|a•b|≠|a|•|b|
4、由
|a|=|b|
,推不出
a=b或a=-b.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询