y1和y2是微分方程的两个特解
老师请问已知y1和y2是微分方程y'p(x)y=0的两个不同的特解.则方程的通解是什么?A:C1y1c2y2B:C(y1-y2)C:C(y1y2)为什么A不对B对A:C1...
老师请问
已知y1和y2是微分方程y' p(x)y=0的两个不同的特解.则方程的通解 是什么?
A:C1y1 c2 y2 B:C(y1-y2) C:C(y1 y2)
为什么A不对 B对
A:C1y1+C2 y2 B:C(y1-y2) C:C(y1+y2) 展开
已知y1和y2是微分方程y' p(x)y=0的两个不同的特解.则方程的通解 是什么?
A:C1y1 c2 y2 B:C(y1-y2) C:C(y1 y2)
为什么A不对 B对
A:C1y1+C2 y2 B:C(y1-y2) C:C(y1+y2) 展开
2个回答
展开全部
题目有问题:
恐怕是y1和y2是微分方程y'+ p(x)y=f(x)的两个不同的特解。
这时,微分方程y'+ p(x)y=0的通解就是y=C(y1-y2),因为y1-y2是y'+ p(x)y=0的非零解。
微分方程,是指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。
来源及发展
微分方程研究的来源:它的研究来源极广,历史久远。牛顿和G.W.莱布尼茨创造微分和积分运算时,指出了它们的互逆性,事实上这是解决了最简单的微分方程y'=f(x)的求解问题。当人们用微积分学去研究几何学、力学、物理学所提出的问题时,微分方程就大量地涌现出来。
牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用叫做“首次积分”的办法,完全解决了它的求解问题。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |