lim(n→∞) 1/n(2n!/n!)^1/n的极限 用定积分求

 我来答
亓旎豆晗琴
2020-02-25 · TA获得超过1159个赞
知道小有建树答主
回答量:1925
采纳率:91%
帮助的人:9.3万
展开全部
lim(n→∞) 1/n(2n!/n!)^1/n
=lim1/n*((n+1)(n+2)...(n+n))^1/n
=lim[(n+1)/n*(n+2)/n*(n+n)/n)]^1/n
=lim[(1+1/n)*(1+2/n)*(1+3/n)*...(1+n/n)]^1/n
=e^{1/n*ln[(1+1/n)+(1+2/n)+(1+3/n)+...(1+n/n)]]}
又 积分xdx 从1到2 =lim(n→∞) [(1/n)*(1+1/n)+(1/n)*(1+2/n)+...+(1/n)*(1+n/n)]
=1/2*2^2-1/2*1^2=3/2
因此 lim[(1+1/n)+(1+2/n)+(1+3/n)+...(1+n/n)]]=lim[3/2*n]
原式=e^lim(1/n*ln(3/2)n) =e^ lim{[1/n*ln(3/2)]+[ln(n)/n]}
=e^lim{[ln(n)/n]} (分子分母分别求导)
=e^lim(1/n)=e^0=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式