求y=x(1+√x)的单调区间
2个回答
展开全部
最快的方法就是对这个函数
求导
y=x+x√x
y'=1+√x+(√x)/2
x无论为何值y'都是大于0的
又因
原函数
的
定义域
为x≥0
所以这个函数在x∈[0,+∝)为
增函数
如果不懂求导的话
那么就设x1>x2≥0
令f(x)=y=x(1+√x)
f(x1)-f(x2)=x1(1+√x1)-x2(1+√x2)=
因为x1>x2
所以√x1>√x2
即1+√x1>1+√x2
那么x1(1+√x1)>x2(1+√x2)
所以f(x1)-f(x2)>0
即f(x1)>f(x2)
所以这个函数在x∈[0,+∝)为增函数
求导
y=x+x√x
y'=1+√x+(√x)/2
x无论为何值y'都是大于0的
又因
原函数
的
定义域
为x≥0
所以这个函数在x∈[0,+∝)为
增函数
如果不懂求导的话
那么就设x1>x2≥0
令f(x)=y=x(1+√x)
f(x1)-f(x2)=x1(1+√x1)-x2(1+√x2)=
因为x1>x2
所以√x1>√x2
即1+√x1>1+√x2
那么x1(1+√x1)>x2(1+√x2)
所以f(x1)-f(x2)>0
即f(x1)>f(x2)
所以这个函数在x∈[0,+∝)为增函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由均值不等式,
y
在
x=1/x,
x=1时取最小值,
为
2.
0<x<1时,
任取两个点,
x1<x2
y(x2)
-
y(x1)
=
(x2-x1)
+
1/x2
-
1/x1
=
(x2-x1)
+
(x1-x2)/x1x2
=
(x1x2-1)(x2-x1)/x1x2
因为
0
<
x1,x2
<
1,
所以
x1x2
<
1,
y(x2)
-
y(x1)
<
0,
y
单减
同理当
x>1
时,
y
单增
然后因为
y
是一个奇函数,
所以单增在
(-无穷大,-1]和[1,+无穷大)
单减在
[-1,0)
和
(0,1]
采纳下哈
谢谢
y
在
x=1/x,
x=1时取最小值,
为
2.
0<x<1时,
任取两个点,
x1<x2
y(x2)
-
y(x1)
=
(x2-x1)
+
1/x2
-
1/x1
=
(x2-x1)
+
(x1-x2)/x1x2
=
(x1x2-1)(x2-x1)/x1x2
因为
0
<
x1,x2
<
1,
所以
x1x2
<
1,
y(x2)
-
y(x1)
<
0,
y
单减
同理当
x>1
时,
y
单增
然后因为
y
是一个奇函数,
所以单增在
(-无穷大,-1]和[1,+无穷大)
单减在
[-1,0)
和
(0,1]
采纳下哈
谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询