2个回答
展开全部
1) 原极限 = lim{x->0} [e^x f'(e^x - 1) - f'(x)]/(3x^2)
= lim{x->0} [e^2x f''(e^x - 1) + e^x f'(e^x - 1) - f''(x)]/(6x)
= lim{x->0} [e^3x f'''(e^x - 1) + e^2x f'(e^x - 1) - f''(x)]/6
= lim{x->0} [e^3x f'''(e^x - 1) - 3]/6 = 3/2, if f'''(0) = 12
2) 原极限 = lim{x->0} {e^[(2/x)ln(1+x)] - e^2[1-ln(1+x)]}/x, simplification first
= lim{x->0} {e^[(2/x)(x-x^2/2+x^3/3] - e^2(1-x+x^2/2)]}/x
= lim{x->0} {e^[(2-x+2x^2/3] - e^2[1-x+x^2/2]}/x
= lim{x->0} e^2{[1-x+2x^2/3+(-x+2x^2/3)^2/2!] - [1-x+x^2/2]}/x
= 0, since the numerator has a higher degree of zero.
= lim{x->0} [e^2x f''(e^x - 1) + e^x f'(e^x - 1) - f''(x)]/(6x)
= lim{x->0} [e^3x f'''(e^x - 1) + e^2x f'(e^x - 1) - f''(x)]/6
= lim{x->0} [e^3x f'''(e^x - 1) - 3]/6 = 3/2, if f'''(0) = 12
2) 原极限 = lim{x->0} {e^[(2/x)ln(1+x)] - e^2[1-ln(1+x)]}/x, simplification first
= lim{x->0} {e^[(2/x)(x-x^2/2+x^3/3] - e^2(1-x+x^2/2)]}/x
= lim{x->0} {e^[(2-x+2x^2/3] - e^2[1-x+x^2/2]}/x
= lim{x->0} e^2{[1-x+2x^2/3+(-x+2x^2/3)^2/2!] - [1-x+x^2/2]}/x
= 0, since the numerator has a higher degree of zero.
更多追问追答
追问
第一题还有其它方法吗
追答
因为不知道具体的函数形式,想象不到其它方法。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询