什么是机器学习?
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能核心,是使计算机具有智能的根本途径。
机器学习实际上已经存在了几十年或者也可以认为存在了几个世纪。追溯到17世纪,贝叶斯、拉普拉斯关于最小二乘法的推导和马尔可夫链,这些构成了机器学习广泛使用的工具和基础。
1950年(艾伦.图灵提议建立一个学习机器)到2000年初(有深度学习的实际应用以及最近的进展,比如2012年的AlexNet),机器学习有了很大的进展。
从20世纪50年代研究机器学习以来,不同时期的研究途径和目标并不相同,可以划分为四个阶段。
第一阶段是20世纪50年代中叶到60年代中叶,这个时期主要研究“有无知识的学习”。这类方法主要是研究系统的执行能力。
这个时期,主要通过对机器的环境及其相应性能参数的改变来检测系统所反馈的数据,就好比给系统一个程序,通过改变它们的自由空间作用,系统将会受到程序的影响而改变自身的组织,最后这个系统将会选择一个最优的环境生存。
在这个时期最具有代表性的研究就是Samuet的下棋程序。但这种机器学习的方法还远远不能满足人类的需要。
2018-10-31 广告
广告 您可能关注的内容 |