sinx和x等价无穷小怎么证明的?

 我来答
清风聊生活
高粉答主

2021-10-27 · 醉心答题,欢迎关注
知道小有建树答主
回答量:3066
采纳率:100%
帮助的人:47.6万
展开全部

法一:用泰勒公示展开 sinx = x-x^3/3!+x^5/5!-x^7/7!+x^9/9!+Rn(x) ,x 趋于0时只剩下x项,其余都是高阶小量,sinx和x等价无穷小


法二:洛必达法则,sinx/x 上下分别求导后为cosx /1 ,x等于0时该值为1,所以sinx和x等价无穷小。lim(x→0)sinx/x
=1
∴sinx与x在x趋近于0时,为等价无穷小。∵lim(x→0)sinx/x
=1
∴sinx与x在x趋近于0时,为等价无穷小。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式