收敛数列与其子数列间的关系是什么?

 我来答
教育小百科达人
2021-11-06 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:473万
展开全部

收敛数列与其子数列间的关系是:

其子序列的极限与原来的收敛序列的极限相同,从取K=N开始,按定义证明就是说n(k)>N,就有|Xn(k)-a|<e。

设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。



有界性:

设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。

如果数列{Xn}收敛,那么该数列必定有界。无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。

数列有界是数列收敛的必要条件,但不是充分条件

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式