微积分,求偏导,详细过程?

 我来答
小茗姐姐V
高粉答主

2021-06-08 · 关注我不会让你失望
知道大有可为答主
回答量:4.7万
采纳率:75%
帮助的人:6734万
展开全部

方法如下,
请作参考:

dm79635
2022-09-21 · 超过10用户采纳过TA的回答
知道答主
回答量:223
采纳率:0%
帮助的人:6.5万
展开全部
z=arctan(y/x)&706;z/&706;x = [1/(1 + (y/x)^2 ) ] .&706;/&706;x (y/x)= [1/(1 + (y/x)^2 ) ] . (-y/x^2)=-y/(x^2+y^2)&706;^2z/&706;x^2 =[y/(x^...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2022-09-21 · 贡献了超过147个回答
知道答主
回答量:147
采纳率:0%
帮助的人:4.4万
展开全部
z=arctan(y/x)&706;z/&706;x = [1/(1 + (y/x)^2 ) ] .&706;/&706;x (y/x)= [1/(1 + (y/x)^2 ) ] . (-y/x^2)=-y/(x^2+y^2)&706;^2z/&706;x^2 =[y/(x^...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tllau38
高粉答主

2021-06-08 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:1.9亿
展开全部
z=arctan(y/x)
∂z/∂x
= [1/(1 + (y/x)^2 ) ] .∂/∂x (y/x)
= [1/(1 + (y/x)^2 ) ] . (-y/x^2)
=-y/(x^2+y^2)
∂^2z/∂x^2
=[y/(x^2+y^2)^2 ].∂/∂x (x^2+y^2)
=[y/(x^2+y^2)^2 ]. (2x)
=2xy/(x^2+y^2)^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wjl371116
2021-06-09 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67413

向TA提问 私信TA
展开全部
已知z=arctan(y/x);求∂²z/∂x²;
解:设y/x=u;则
∂z/∂x=(∂z/∂u)(∂u/∂x)=[1/(1+u²)](-y/x²)=-[1/(1+y²/x²)](y/x²)=-y/(x²+y²);
∂²z/∂x²=2xy/(x²+y²)²
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式