微积分,求偏导,详细过程?
6个回答
展开全部
z=arctan(y/x)&706;z/&706;x = [1/(1 + (y/x)^2 ) ] .&706;/&706;x (y/x)= [1/(1 + (y/x)^2 ) ] . (-y/x^2)=-y/(x^2+y^2)&706;^2z/&706;x^2 =[y/(x^...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
z=arctan(y/x)&706;z/&706;x = [1/(1 + (y/x)^2 ) ] .&706;/&706;x (y/x)= [1/(1 + (y/x)^2 ) ] . (-y/x^2)=-y/(x^2+y^2)&706;^2z/&706;x^2 =[y/(x^...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
z=arctan(y/x)
∂z/∂x
= [1/(1 + (y/x)^2 ) ] .∂/∂x (y/x)
= [1/(1 + (y/x)^2 ) ] . (-y/x^2)
=-y/(x^2+y^2)
∂^2z/∂x^2
=[y/(x^2+y^2)^2 ].∂/∂x (x^2+y^2)
=[y/(x^2+y^2)^2 ]. (2x)
=2xy/(x^2+y^2)^2
∂z/∂x
= [1/(1 + (y/x)^2 ) ] .∂/∂x (y/x)
= [1/(1 + (y/x)^2 ) ] . (-y/x^2)
=-y/(x^2+y^2)
∂^2z/∂x^2
=[y/(x^2+y^2)^2 ].∂/∂x (x^2+y^2)
=[y/(x^2+y^2)^2 ]. (2x)
=2xy/(x^2+y^2)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知z=arctan(y/x);求∂²z/∂x²;
解:设y/x=u;则
∂z/∂x=(∂z/∂u)(∂u/∂x)=[1/(1+u²)](-y/x²)=-[1/(1+y²/x²)](y/x²)=-y/(x²+y²);
∂²z/∂x²=2xy/(x²+y²)²
解:设y/x=u;则
∂z/∂x=(∂z/∂u)(∂u/∂x)=[1/(1+u²)](-y/x²)=-[1/(1+y²/x²)](y/x²)=-y/(x²+y²);
∂²z/∂x²=2xy/(x²+y²)²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |