一个数学积分问题?
展开全部
令x=sect,那么x²-1=tan²t,
dx=d(sect)=sect*tantdt
∴原式=∫1/(sect*tant)*sect*tantdt=∫1dt=t+C
而x=sect=1/cost,
∴cost=1/x,
∴t=arccos(1/x)
∴原式=arccos(1/x)+C
x趋近于正无穷大时,1/x趋近于0,arccos(1/x)为定值,(积分表示的面积为无穷大的情况,称之为广义积分发散)
所以该广义积分收敛,且其值为
arccos(0)-arccos(1)=π/2。
dx=d(sect)=sect*tantdt
∴原式=∫1/(sect*tant)*sect*tantdt=∫1dt=t+C
而x=sect=1/cost,
∴cost=1/x,
∴t=arccos(1/x)
∴原式=arccos(1/x)+C
x趋近于正无穷大时,1/x趋近于0,arccos(1/x)为定值,(积分表示的面积为无穷大的情况,称之为广义积分发散)
所以该广义积分收敛,且其值为
arccos(0)-arccos(1)=π/2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询