有界不一定有极限,比如函数y=sinx,当x趋于无穷时,极限不存在。
有限个有界函数的和、差、积必有界。极限存在只是函数有界的充分条件,而非必要条件,即函数有界但函数极限不一定存在。如果函数在某点连续,那么在这个点附近一定有一个邻域,这个邻域中函数是有界的。
相关概念:
如果一个数列的项数n趋向于无穷大时,数列的极限存在,那么就称这个数列收敛。
而对于函数,如果一个函数的自变量趋向于X0(或∞)时,它的因变量趋向某个特定值或者趋向∞那么就称函数在X0(或无穷大)处有极限。
若一个数列收敛,那么这个数列就是有界数列,若一个函数在某点处有极限,那么这个函数在这个点处的去心领域内有界,也就是说局部有界。