高数定积分?
为什么第五题第三步直接变成了二分之π变成了π,积分上下限变成了0-π/2,主要是积分上下限不知道怎么变的...
为什么第五题第三步直接变成了二分之π变成了π,积分上下限变成了0-π/2,主要是积分上下限不知道怎么变的
展开
2个回答
展开全部
(5)
let
u=π-x
du=-dx
x=0, u=π
x=π, u=0
I
=∫(0->π) x.√[(sinx)^2-(sinx)^4] dx
=∫(π->0) (π-u).√[(sinu)^2-(sinu)^4] (-du)
=∫(0->π) (π-u).√[(sinu)^2-(sinu)^4] du
=∫(0->π) (π-x).√[(sinx)^2-(sinx)^4] dx
2I
=∫(0->π) π.√[(sinx)^2-(sinx)^4] dx
I =(π/2).∫(0->π) √[(sinx)^2-(sinx)^4] dx =π.∫(0->π/2) √[(sinx)^2-(sinx)^4] dx
let
t= π-x
dt= -dx
x=π, t=0
x=π/2, t= π/2
∫(0->π) √[(sinx)^2-(sinx)^4] dx
=∫(0->π/2) √[(sinx)^2-(sinx)^4] dx +∫(π/2->π) √[(sinx)^2-(sinx)^4] dx
=∫(0->π/2) √[(sinx)^2-(sinx)^4] dx +∫(π/2->0) √[(sint)^2-(sinx)^4] ( -dt)
=∫(0->π/2) √[(sinx)^2-(sinx)^4] dx +∫(0->π/2) √[(sint)^2-(sinx)^4] dt
=∫(0->π/2) √[(sinx)^2-(sinx)^4] dx +∫(0->π/2) √[(sinx)^2-(sinx)^4] dx
=2∫(0->π/2) √[(sinx)^2-(sinx)^4] dx
let
u=π-x
du=-dx
x=0, u=π
x=π, u=0
I
=∫(0->π) x.√[(sinx)^2-(sinx)^4] dx
=∫(π->0) (π-u).√[(sinu)^2-(sinu)^4] (-du)
=∫(0->π) (π-u).√[(sinu)^2-(sinu)^4] du
=∫(0->π) (π-x).√[(sinx)^2-(sinx)^4] dx
2I
=∫(0->π) π.√[(sinx)^2-(sinx)^4] dx
I =(π/2).∫(0->π) √[(sinx)^2-(sinx)^4] dx =π.∫(0->π/2) √[(sinx)^2-(sinx)^4] dx
let
t= π-x
dt= -dx
x=π, t=0
x=π/2, t= π/2
∫(0->π) √[(sinx)^2-(sinx)^4] dx
=∫(0->π/2) √[(sinx)^2-(sinx)^4] dx +∫(π/2->π) √[(sinx)^2-(sinx)^4] dx
=∫(0->π/2) √[(sinx)^2-(sinx)^4] dx +∫(π/2->0) √[(sint)^2-(sinx)^4] ( -dt)
=∫(0->π/2) √[(sinx)^2-(sinx)^4] dx +∫(0->π/2) √[(sint)^2-(sinx)^4] dt
=∫(0->π/2) √[(sinx)^2-(sinx)^4] dx +∫(0->π/2) √[(sinx)^2-(sinx)^4] dx
=2∫(0->π/2) √[(sinx)^2-(sinx)^4] dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |