数列的收敛与发散是什么?

 我来答
休闲娱乐助手之星M
2021-10-29 · TA获得超过53.8万个赞
知道大有可为答主
回答量:2857
采纳率:100%
帮助的人:115万
展开全部

简单讲,收敛数列越到后而,数的值越接近0,那样和就越接近一个常数了。不符合的就是发散数列了。

有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。

例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。

f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。

数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。

数列简介:

数列(sequence of number),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

著名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式