反常积分敛散性判别法是什么?

 我来答
杨老师秒懂课堂
高能答主

2021-10-30 · 分享生活酸甜苦辣咸,喜怒哀乐。
杨老师秒懂课堂
采纳数:876 获赞数:110667

向TA提问 私信TA
展开全部

判断反常积分的收敛有比较判别法和Cauchy判别法。

定积分的积分区间都是有限的,被积函数都是有界的。但在实际应用和理论研究中,还会遇到一些在无限区间上定义的函数或有限区间上的无界函数,对它们也需要考虑类似于定积分的问题。因此,有必要对定积分的概念加以推广,使之能适用于上述两类函数。

反常积分存在时的几何意义是函数与X轴所围面积存在有限制时,即便函数在一点的值无穷,但面积可求。

反常积分的敛散判断

反常积分的敛散判断本质上是极限的存在性与无穷小或无穷大的比阶问题。首先要记住两类反常积分的收敛尺度:对第一类无穷限

而言,当x→+∞时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛;对第二类无界函数

而言,当x→a+时,f(x)必为无穷大。且无穷小的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式