二阶微分方程解法总结有哪些?

 我来答
社无小事
高能答主

2022-02-08 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20375

向TA提问 私信TA
展开全部

二阶微分方程解法总结:可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法。

微分方程解法总结:

一、g(y)dy=f(x)dx形式,可分离变量的微分方程,直接分离然后积分。

二、可化为dy/dx=f(y/x)的齐次方程,换元分离变量。

三、一阶线性微分方程,dy/dx+P(x)y=Q(x)先求其对应的一阶齐次方程,然后用常数变易法带换u(x);得到通解y=e^-∫P(x)dx{∫Q(x)[e^∫P(x)dx]dx+C}。

约束条件:

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式