1平方加到n平方推导是什么?

 我来答
取名魔术师
高能答主

2022-02-09 · 致力于为客户提供个性化、富有内涵且符合需求的优质名字。
取名魔术师
采纳数:786 获赞数:18498

向TA提问 私信TA
展开全部

1的平方加到n的平方的推导公式如下:1²+2²+3²+……+n²=n(n+1)(2n+1)/6。

根据立方差公式(a+1)³-a³=3a²+3a+1可得,a=1时:2³-1³=3×bai1²+3×1+1,a=n时:

(n+1)³-n³=3×n²+3×n+1,将多个等式相加,既有2(n+1)³-3n(1+n)-2(n+1)=(n+1)[2(n+1)²-3n-2]=(n+1)[2(n+1)-1][(n+1)-1]=n(n+1)(2n+1)。

两数的平方和加上两数的积再乘以两数的差,所得到的积就等于两数的立方差。

用公式表达即:a3-b3=(a-b)(a2+ab+b2)。

由于立方项不好拆分,但是我们学过,遇到高阶项要尽量采用低阶项来对其进行简化处理,所以很容易想到a2,同时由于对a3降阶的同时还要和b3进行结合,所以很容易想到a2b这样一个加法项,因此对上式采取分别加和减一个a2b项,得到下式,同时进行相应的合并:

a3-b3=a3-b3+a2b-a2b

=a2(a-b)+b(a2-b2)

=a2(a-b)+b(a+b)(a-b)

=[a2+b(a+b)](a-b)

=(a-b)(a2+ab+b2)

飞轮战神
2023-01-02 · TA获得超过167个赞
知道答主
回答量:28
采纳率:0%
帮助的人:9180
展开全部
用累加法
证:
(a+1)³-a³=3a²+3a+1,
所以a=1时:2³-1³=3×1²+3×1+1
a=2时:3³-2³=3×2²+3×2+1
a=3时:4³-3³=3×3²+3×3+1
a=4时:5³-4³=3×4²+3×4+1...
a=n时:(n+1)³-n³=3×n²+3×n+1
等式两边相加可得:
(n+1)³-1=3(1²+2²+3²+······+n²)+3(1+2+3+······+n)+(1+1+1+······+1)
3(1²+2²+3²+...+n²)=(n+1)³-1-3(1+2+3+.+n)-(1+1+1+...+1)
3(1²+2²+3²+...+n²)=(n+1)³-1-3(1+n)×n÷2-n
6(1²+2²+3²+······+n²)=2(n+1)³-3n(1+n)-2(n+1)=(n+1)[2(n+1)²-3n-2]
=(n+1)[2(n+1)-1][(n+1)-1]=n(n+1)(2n+1)
所以1²+2²+······+n²=n(n+1)(2n+1)/6
望采纳,谢谢!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式