1平方加到n平方推导是什么?
2个回答
展开全部
1的平方加到n的平方的推导公式如下:1²+2²+3²+……+n²=n(n+1)(2n+1)/6。
根据立方差公式(a+1)³-a³=3a²+3a+1可得,a=1时:2³-1³=3×bai1²+3×1+1,a=n时:
(n+1)³-n³=3×n²+3×n+1,将多个等式相加,既有2(n+1)³-3n(1+n)-2(n+1)=(n+1)[2(n+1)²-3n-2]=(n+1)[2(n+1)-1][(n+1)-1]=n(n+1)(2n+1)。
两数的平方和加上两数的积再乘以两数的差,所得到的积就等于两数的立方差。
用公式表达即:a3-b3=(a-b)(a2+ab+b2)。
由于立方项不好拆分,但是我们学过,遇到高阶项要尽量采用低阶项来对其进行简化处理,所以很容易想到a2,同时由于对a3降阶的同时还要和b3进行结合,所以很容易想到a2b这样一个加法项,因此对上式采取分别加和减一个a2b项,得到下式,同时进行相应的合并:
a3-b3=a3-b3+a2b-a2b
=a2(a-b)+b(a2-b2)
=a2(a-b)+b(a+b)(a-b)
=[a2+b(a+b)](a-b)
=(a-b)(a2+ab+b2)
展开全部
用累加法
证:
(a+1)³-a³=3a²+3a+1,
所以a=1时:2³-1³=3×1²+3×1+1
a=2时:3³-2³=3×2²+3×2+1
a=3时:4³-3³=3×3²+3×3+1
a=4时:5³-4³=3×4²+3×4+1...
a=n时:(n+1)³-n³=3×n²+3×n+1
等式两边相加可得:
(n+1)³-1=3(1²+2²+3²+······+n²)+3(1+2+3+······+n)+(1+1+1+······+1)
3(1²+2²+3²+...+n²)=(n+1)³-1-3(1+2+3+.+n)-(1+1+1+...+1)
3(1²+2²+3²+...+n²)=(n+1)³-1-3(1+n)×n÷2-n
6(1²+2²+3²+······+n²)=2(n+1)³-3n(1+n)-2(n+1)=(n+1)[2(n+1)²-3n-2]
=(n+1)[2(n+1)-1][(n+1)-1]=n(n+1)(2n+1)
所以1²+2²+······+n²=n(n+1)(2n+1)/6
望采纳,谢谢!
证:
(a+1)³-a³=3a²+3a+1,
所以a=1时:2³-1³=3×1²+3×1+1
a=2时:3³-2³=3×2²+3×2+1
a=3时:4³-3³=3×3²+3×3+1
a=4时:5³-4³=3×4²+3×4+1...
a=n时:(n+1)³-n³=3×n²+3×n+1
等式两边相加可得:
(n+1)³-1=3(1²+2²+3²+······+n²)+3(1+2+3+······+n)+(1+1+1+······+1)
3(1²+2²+3²+...+n²)=(n+1)³-1-3(1+2+3+.+n)-(1+1+1+...+1)
3(1²+2²+3²+...+n²)=(n+1)³-1-3(1+n)×n÷2-n
6(1²+2²+3²+······+n²)=2(n+1)³-3n(1+n)-2(n+1)=(n+1)[2(n+1)²-3n-2]
=(n+1)[2(n+1)-1][(n+1)-1]=n(n+1)(2n+1)
所以1²+2²+······+n²=n(n+1)(2n+1)/6
望采纳,谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询