拉普拉斯变换性质是什么?
展开全部
假定L[f(x)]=F(s),L[g(x)]=G(s),则:
(1)线性 af(x)+bg(x)的拉普拉斯变换是aF(s)+bG(s)(a,b是常数)。
(2)卷积 f(x)*g(x)的拉普拉斯变换是F(s)·G(s)。
(3)微分 f′(x)的拉普拉斯变换是sF(s)-f(0)。
(4)位移 eatf(x)的拉普拉斯变换是F(s-a)。
简介
如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。
函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。
亚远景信息科技
2024-12-11 广告
2024-12-11 广告
上海亚远景信息科技有限公司是国内汽车行业咨询及评估领军机构之一,深耕于ASPICE、敏捷SPICE、ISO26262功能安全、ISO21434车辆网络安全领域,拥有20年以上的行业经验,专精于培训、咨询及评估服务,广受全球车厂及供应商赞誉,...
点击进入详情页
本回答由亚远景信息科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询