1/√(1-x^2)的不定积分是什么?

 我来答
娱乐八卦爱好者
2022-01-26 · TA获得超过2216个赞
知道小有建树答主
回答量:2720
采纳率:100%
帮助的人:44.7万
展开全部

1/√(1-x^2)的不定积分是: (1/2)[arcsinx + x√(1 - x²)] + C。

具体回答如下:

令x = sinθ,dx = cosθ dθ。

所以:

∫ √(1 - x²) dx 

= ∫ √(1 - sin²θ)(cosθ dθ)

= ∫ cos²θ dθ

= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + C

= (arcsinx)/2 + (sinθcosθ)/2 + C

= (arcsinx)/2 + (x√(1 - x²))/2 + C

= (1/2)[arcsinx + x√(1 - x²)] + C

不定积分的意义:

如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x),即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合,原函数不可以表示成初等函数的有限次复合的函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式