相关系数计算公式是什么?
相关系数r的计算公式是ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]。
公式描述:公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。
公式。
若Y=a+bX,则有:
令E(X) =μ,D(X) =σ。
则E(Y) = bμ+a,D(Y) = bσ。
E(XY) = E(aX + bX) = aμ+b(σ+μ)。
Cov(X,Y) = E(XY)−E(X)E(Y) = bσ。
缺点
需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1。
当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。
2021-01-25 广告
2023-09-05 · 百度认证:SPSSAU官方账号,优质教育领域创作者
相关系数的公式是什么?
相关系数常用于度量两个变量之间的相关程度,相关系数有多种,pearson相关系数、spearman相关系数等,但是pearson相关系数比较常用。通常情况下有相关关系,相关系数越大,表示两变量之间的相关性越强,相关系数越小,则表示相关性越弱。pearson相关系数公式为:
式中E为数学期望,N为样本容量。以上都可以计算皮尔逊相关系数。相关系数的结果如下:
从上表可知,利用相关分析去研究公司满意度和人际关系, 机会感知, 离职倾向, 工作条件共4项之间的相关关系,使用Pearson相关系数去表示相关关系的强弱情况。
其中上表展示了各个变量的均值标准差以及相关系数等,例如:公司满意度的平均值为3.291,标准差为0.541,人际关系的平均值是3.748,标准差为0.616,机会感知的平均值3.322以及标准差为0.602,以此类推。