A为n阶反称矩阵,当且仅当对任意n维向量X,都有X^TAX=0.这个怎么证
1个回答
展开全部
设A反对称,A′=-A 注意X′AX是一个数,﹙X′AX﹚′=X′AX
另一方面,﹙X′AX﹚′=X′A′X′′=X′﹙-A﹚X=-X′AX
∴X′AX=-X′AX X′AX=0
反之,设对任意n维列向量X,都有X′AX=0 设A=﹙aij﹚
取X′=﹙0……0 1 0……0﹚[第i个是1,其他全部是0] X′AX=aii=0 说明A的对角元全部是0.
取X′=﹙﹙0……0 1 0……0 1 0……0﹚[第i,j个是1,i≠j 其他全部是0]
X′AX=aii+aji+aij+ajj=aji+aij=0 aji=-aij A′=-A A反对称.
另一方面,﹙X′AX﹚′=X′A′X′′=X′﹙-A﹚X=-X′AX
∴X′AX=-X′AX X′AX=0
反之,设对任意n维列向量X,都有X′AX=0 设A=﹙aij﹚
取X′=﹙0……0 1 0……0﹚[第i个是1,其他全部是0] X′AX=aii=0 说明A的对角元全部是0.
取X′=﹙﹙0……0 1 0……0 1 0……0﹚[第i,j个是1,i≠j 其他全部是0]
X′AX=aii+aji+aij+ajj=aji+aij=0 aji=-aij A′=-A A反对称.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询