用罗必达法则求lim(x→0)〔1-(sinx/x)〕/(1-cosx)的极限
1个回答
展开全部
lim(x→0)〔1-(sinx/x)〕/(1-cosx)
=lim(x→0)〔x-sinx〕/x(x方/2)
=2lim(x→0)〔x-sinx〕/x立方
=2lim(x→0)〔1-cosx〕/3x方
=2lim(x→0)〔sinx〕/6x
=2/6 ×1
=1/3
=lim(x→0)〔x-sinx〕/x(x方/2)
=2lim(x→0)〔x-sinx〕/x立方
=2lim(x→0)〔1-cosx〕/3x方
=2lim(x→0)〔sinx〕/6x
=2/6 ×1
=1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询