若函数f(x)=sinwx(w>0)在区间[0,π/3]上单调递增,在区间[π/3,π/2]上单调递减,则w=

 我来答
科创17
2022-07-11 · TA获得超过5918个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:177万
展开全部
f(x)=sinwx
在区间[0,π/3]上单调递增,在区间[π/3,2π/3]
所以x=π/3是f(x)=sinwx的最大值点
即f(π/3)=sin(wπ/3)=1
即wπ/3=π/2 +2kπ(k为整数)
w=3/2+6k
取w的最小正值
所以w=3/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式