复变函数积分的物理意义是什么?

 我来答
帐号已注销
2021-12-06 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

复变函数积分的物理意义:可以把一个复数等效成一个二维空间的场,然后在里面的积分可以表示功,势能等。

柯西定理告诉我们复平面上闭曲线的积分给出的是闭曲线所包围的区域里函数极点的留数。辐角原理是用积分探测区域内零点的个数(减掉极点的个数)。复积分也可以用来求复流形的体积,并且有一般的上同调理论。

复变函数论在应用方面

涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式