如何用确界存在定理证明聚点原理?
1个回答
展开全部
如下:
设考虑的有界无穷点集为X,我们将R分为两部分,(-∞,c]与(c,+∞),令A为使得(-∞,c]只包含有限个或者0个X中的点的所有c的集合,则对每个A中的c,(c,+∞)必定包括无穷个X中的点。
由于X有界,设其上界为M,则A必有上界M+1,由确界原理知A存在上确界ξ,取区间(ξ-ε,ξ+ε),可知其必定包括X的无穷个点,否则(-∞,ξ+ε]只包括X中有限个点,ξ+ε∈A,与ξ为A上确界相悖。现在令ε→0,可知在ξ的任意领域内都有无穷个X中的点,所以ξ为X的一个聚点。
确界原理
若把+∞和-∞补充到数集当中,并规定任意一实数a与+∞,-∞的关系为-∞<a<+∞,则确界的概念可扩充为:若数集S无上界,则规定+∞为S的非正常上确界,记做sup S=+∞。
若S无下界,则定义-∞为S的非正常下确界,记做inf S=-∞,相应的,若S有上确界或者下确界,则此定义分别成为正常上确界和正常下确界。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询