求微积分方程的解,y'sinx=ylny

 我来答
大沈他次苹0B
2022-06-22 · TA获得超过7454个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:198万
展开全部
计算微分方程的关键主要在统一变量,步骤如下:
由原式推出:y`/y = lny / sinx
(lny)` = lny /sinx
(lny)`/lny = 1/sinx
(ln(lny))` = cscx
这样就可以写成 d(ln(lny)) = cscxdx
两端同时积分
得出通解 ln(lny) = ln|tan(x/2)| + C
因为y(x=pi/2)=e,得出C=0
所以得出特解ln(lny) = ln|tan(x/2)| 【其中可以带绝对值,可以不带,一般不带】
最后得出lny = tan(x/2)
y = e^(tan(x/2))
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式