数学数学归纳法

 我来答
大沈他次苹0B
2022-06-17 · TA获得超过7325个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:178万
展开全部

  数学归纳是一种有特殊事例导出一般原理的思维方法。下面是我为你整理的高中数学数学归纳法,一起来看看吧。

  高中数学数学归纳法定义

  最简单和常见的数学归纳法是证明当n等于任意一个自然数时某命题成立。证明分下面两步:

  1.证明当n= 1时命题成立。

  2.假设n=m时命题成立,那么可以推导出在n=m+1时命题也成立。(m代表任意自然数)

  这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你可以:

  1)证明第一张骨牌会倒。

  2)证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。

  那么便可以下结论:所有的骨牌都会倒下。

  高中数学数学归纳法及其证明方法

  (一)第一数学归纳法

  一般地,证明一个与正整数n有关的命题,有如下步骤

  (1)证明当n取第一个值时命题成立,对于一般数列取值为1,但也有特殊情况,

  (2)假设当n=k(k≥[n的第一个值],k为自然数)时命题成立,证明当n=k+1时命题也成立。

  (二)第二数学归纳法

  对于某个与自然数有关的命题,

  (1)验证n=n0时P(n)成立,

  (2)假设no<n<k时P(n)成立,并在此基础上,推出P(k+1)成立。

  综合(1)(2)对一切自然数n(>n0),命题P(n)都成立,

  (三)螺旋式数学归纳法

  P(n),Q(n)为两个与自然数有关的命题,

  假如(1)P(n0)成立,

  (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立,综合(1)(2),对于一切自然数n(>n0),P(n),Q(n)都成立,

  (四)倒推数学归纳法(又名反向数学归纳法)

  (1)对于无穷多个自然数命题P(n)成立,

  (2)假设P(k+1)成立,并在此基础上推出P(k)成立,

  综合(1)(2),对一切自然数n(>n0),命题P(n)都成立,

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式