大一高数极限问题 n为正整数,当x趋近0的时候,有(x+1)(x+2)(x+3).(x+n)-n!~Ax^k,则A=

 我来答
优点教育17
2022-05-18 · TA获得超过7641个赞
知道大有可为答主
回答量:5800
采纳率:99%
帮助的人:300万
展开全部
(x+1)(x+2)(x+3).(x+n)-n!用二项式展开后为关于x的n次多项式,最高次项为x^n,最低次项为ax,a=n!+n!/2+n!/3+ .+n!/n,欲使(x+1)(x+2)(x+3).(x+n)-n!Ax^k,x趋近0时,那么ax~Ax^k,故k=1,A=a=n!+n!/2+n!/3+ .+n!/n...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式