反三角函数的定义域是什么
1个回答
展开全部
反三角函数是一种数学术语。反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。以下是我为大家整理的关于反三角函数定义域,欢迎大家前来阅读!
反三角函数定义域
y=arcsin(x),定义域[-1,1]
y=arccos(x),定义域[-1,1]
y=arctan(x),定义域(-∞,+∞)
y=arccot(x),定义域(-∞,+∞)
sin(arcsin x)=x,定义域[-1,1]
反三角函数数学术语
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2
反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了【arc+函数名】的形式表示反三角函数,而不是f-1(x)。
⑴正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。arcsinx表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。【图中红线】
⑵余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。arccosx表示一个余弦值为x的角,该角的范围在[0,π]区间内。【图中蓝线】
⑶正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。arctanx表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。【图中绿线】
注释:【图的画法根据反函数的性质即:反函数图像关于y=x对称】
反三角函数主要是三个:
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]图象用深红色线条;
y=arccos(x),定义域[-1,1],值域[0,π],图象用深蓝色线条;
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用浅绿色线条;
y=arccot(x),定义域(-∞,+∞),值域(0,π),暂无图象;
sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx
证明 方法 如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得
其他几个用类似方法可得
cos(arccosx)=x,arccos(-x)=π-arccosx
tan(arctanx)=x,arctan(-x)=-arctanx
反三角函数数学公式
反三角函数其他公式:
cos(arcsinx)=(1-x^2)^0.5
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
arcsinx=x+x^3/(2*3)+(1*3)x^5/(2*4*5)+1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1)!!表示双阶乘
arccosx=π-(x+x^3/(2*3)+(1*3)x^5/(2*4*5)+1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
arctanx=x-x^3/3+x^5/5-……
举例
当x∈[-π/2,π/2]有arcsin(sinx)=x
x∈[0,π],arccos(cosx)=x
x∈(-π/2,π/2),arctan(tanx)=x
x∈(0,π),arccot(cotx)=x
x>0,arctanx=π/2-arctan1/x,arccotx类似
若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy))
反三角函数定义域
y=arcsin(x),定义域[-1,1]
y=arccos(x),定义域[-1,1]
y=arctan(x),定义域(-∞,+∞)
y=arccot(x),定义域(-∞,+∞)
sin(arcsin x)=x,定义域[-1,1]
反三角函数数学术语
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2
反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了【arc+函数名】的形式表示反三角函数,而不是f-1(x)。
⑴正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。arcsinx表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。【图中红线】
⑵余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。arccosx表示一个余弦值为x的角,该角的范围在[0,π]区间内。【图中蓝线】
⑶正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。arctanx表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。【图中绿线】
注释:【图的画法根据反函数的性质即:反函数图像关于y=x对称】
反三角函数主要是三个:
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]图象用深红色线条;
y=arccos(x),定义域[-1,1],值域[0,π],图象用深蓝色线条;
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用浅绿色线条;
y=arccot(x),定义域(-∞,+∞),值域(0,π),暂无图象;
sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx
证明 方法 如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得
其他几个用类似方法可得
cos(arccosx)=x,arccos(-x)=π-arccosx
tan(arctanx)=x,arctan(-x)=-arctanx
反三角函数数学公式
反三角函数其他公式:
cos(arcsinx)=(1-x^2)^0.5
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
arcsinx=x+x^3/(2*3)+(1*3)x^5/(2*4*5)+1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1)!!表示双阶乘
arccosx=π-(x+x^3/(2*3)+(1*3)x^5/(2*4*5)+1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
arctanx=x-x^3/3+x^5/5-……
举例
当x∈[-π/2,π/2]有arcsin(sinx)=x
x∈[0,π],arccos(cosx)=x
x∈(-π/2,π/2),arctan(tanx)=x
x∈(0,π),arccot(cotx)=x
x>0,arctanx=π/2-arctan1/x,arccotx类似
若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy))
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |