求极限 lim(x→0){x[sin(1/x^2)-1/sin2x]}
展开全部
xsin(1/x^2)-x/sin2x
1/x^2→∞,所以sin(1/x^2)在-1到1之间震荡
而x→0,所以xsin(1/x^2)极限是0
x/sin2x=(1/2)*(2x)/sin2x
x→0则2x→0
所以2x/sin2x极限是1
所以原式极限=0-1/2=-1/2
1/x^2→∞,所以sin(1/x^2)在-1到1之间震荡
而x→0,所以xsin(1/x^2)极限是0
x/sin2x=(1/2)*(2x)/sin2x
x→0则2x→0
所以2x/sin2x极限是1
所以原式极限=0-1/2=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询